
A Pipeline Operator's View of Hydrogen and CO2 Pipeline Opportunities

2024 NAPCA Convention April 16 -18, 2024

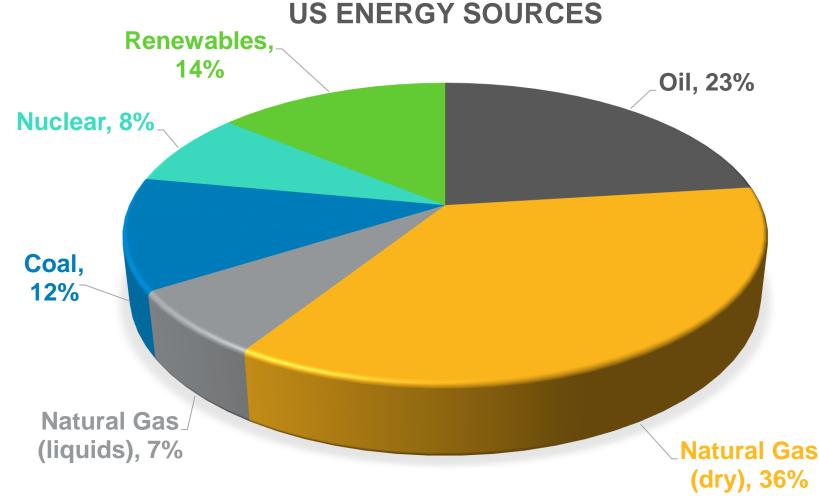
> Steve Rapp Technical Director, Pipeline Integrity, Materials Engineering Enbridge Gas Transmission and Midstream

😑 Gas Storage Facility

O NGL Storage Facility

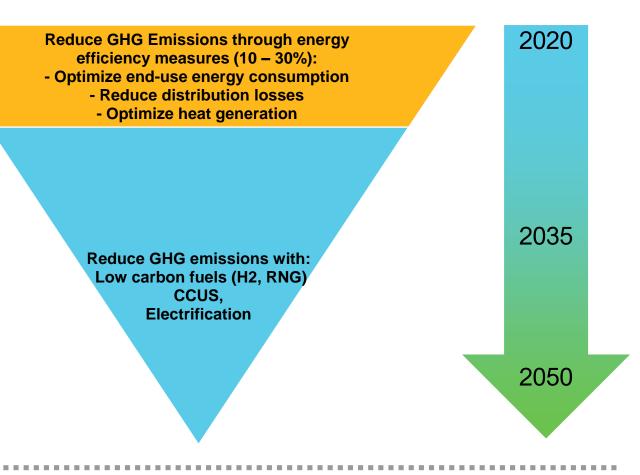
- Affiliated Gas Distribution Territory

About us


Enbridge is North America's leading energy infrastructure company

Liquids Pipelines	Natural Gas Pipelines	Natural Gas Utilities	Renewable Power
 ~28,661 km/17,809 mi of pipe Moving 3 million barrels/day 	 118,763* km/73,796* mi of pipe Moving 25.7 Bcf/day 	 3.9 million retail customers Serving 670+ communities	 45+ renewable power facilities 2,174 MW generating capacity
30% of crude oil produced in North America	20% of the natural gas consumed in the U.S.	75% of Ontario residents' energy needs delivered	966,000 homes powered by our assets

Major Sources of Energy in the U.S. (Q1/Q2 2022)


- The largest source of energy in the Unites States is oil and natural gas.
- Oil and natural gas accounts for 66% of the energy we use (according to the U.S. Energy Information Administration, Oct. 2022)
- Other sources include coal, nuclear, and renewables

Decarbonization of Large Volume Customers

- Energy efficiency
 - Reduce end-use energy consumption
 - Reduce distribution and radiation losses
 - Improve efficiency of heat generation
 equipment
- Low carbon fuels for boilers
 - Renewable Natural Gas (RNG)
 - Hydrogen
 - Biomass, digester gas, biofuels, syngas
- Carbon Capture Utilization and Storage (CCUS)
 - Capture CO2 from boiler stacks
- Electrification
 - Replace gas boiler with electric boiler, provided low carbon electricity is available

Net Zero Emissions by 2050

Why Blend Hydrogen in a Natural Gas Pipeline?

- Hydrogen is abundant and can be produced using sustainable energy sources.
- Adding hydrogen to natural gas can significantly reduce greenhouse gas emissions (if the hydrogen is produced from low-carbon energy sources)
 - Biomass, solar, wind, nuclear, fossil resources with carbon capture
- Hydrogen may be carried through to end-user systems or extracted to be used in fuel cells (automotive or stationary)
 - Use in fuel cells reduces petroleum consumption and improves air quality (reduces emissions)
- Transport hydrogen gas via pipeline is preferred over transport as a liquid in trucks or tankers
 - More economical, higher safety
- May provide an economical means to store energy produced from renewable sources such as wind or solar, capturing otherwise curtailed or unused power
- Pipeline infrastructure is already in place!

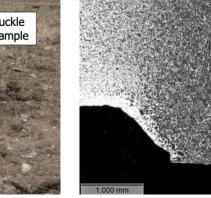
Natural Gas Transmission Pipeline Networks in the North America

- Early Enbridge gas line was built in 1943 to support WW II
 - Big Inch Pipeline: 24 in. OD crude oil pipeline (1400 mi. Longest pipeline to date) later converted to gas, still in-service today
- Thousands of miles of natural gas pipeline were constructed in the 1950's and 1960's. about 75% of the US gas transmission system was built prior to 1980
- Over the past several decades, transmission pipeline mileage has seen only modest growth.

Pipeline Challenges Associated with Hydrogen

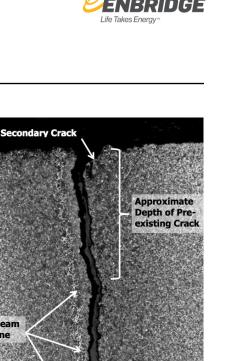
- Hydrogen is a fundamentally a different fuel with lower heating value and the effects of blending must be carefully assessed prior to introduction
 - Pipeline expansion activity will be needed to offset the reduced heating value of hydrogen relative to natural gas.
- Transmission Pipelines: Material degradation needs to be carefully managed:
 - Hydrogen will degrade linepipe properties resulting in reduction in ductility, fracture toughness and reduction in fatigue resistance
 - Review of existing pipeline networks must be completed to remove/mitigate materials that are not hydrogen compatible
 - Process for converting existing pipeline infrastructure to blended hydrogen service is not standardized
- Leak Management/Metering
 - Detecting and minimizing leaks, meter accuracy

Gaps - Transmission Pipeline Integrity



What needs to be addressed to safety blend hydrogen in natural gas pipelines?

Steel Pipelines	• Lack of Fatigue Crack Growth data for blended hydrogen/natural gas environment with loading ratio (R- ratio) representative of transmission pipelines.
Damage Assessment Models	• Lack of accurate material toughness data in blended hydrogen needed. Needed for damage assessment models.
Valves/Sealing Materials	• Several publications have been released but need matrix of acceptable sealing materials for various sealing designs based on hydrogen blend % (create a design guide).
In-Line Inspection	 Higher sensitivity/lower detection thresholds for indications required. Circumferential Flaw Detection Hydrogen tolerance of ILI tools
Codes and Standards	• Gaps in industry guidance documents related to materials, design, integrity management, safety, electrical codes, leak detection, etc.


Example of Hydrogen Embrittlement Failure

- Occurrence: In-service rupture of a transmission pipeline, East Tennessee Natural Gas system, MP 49.147
 - 22 in. OD x 0.281 in. WT, Grade API Grade X42
- Incident Date: December 15, 2018
- Root Cause: Combination of pre-existing flaw and <u>hydrogen embrittlement</u> of the hard microstructures in the course-grain heat affected zone of the weld seam (electric resistance welded, ERW)
 - Two possible sources of hydrogen: cathodic protection system, corrosion reaction (both can supply atomic hydrogen at the steel surface)
 - Hydrogen embrittlement of the ERW seam reduced fracture toughness of the seam and combined with a pre-existing flaw, resulted in failure at operating pressure of the pipeline.

ERW Seam

Bondline

Further Information is Available

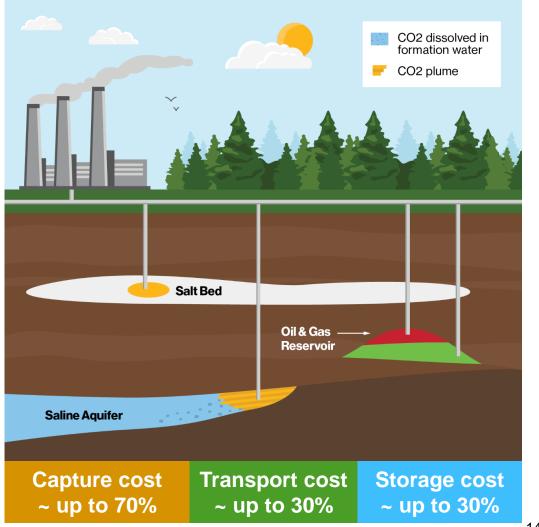
PRCI Report: *Emerging Fuels - Hydrogen SOTA, Gap Analysis, Future Project Roadmap*

- Report PR-720-20603-R01, Nov 2020
- Goal develop a concrete path forward to define necessary projects aimed at providing critical information for companies to safely and reliably inject hydrogen into pipelines at specified blend levels.
- Provides description of worldwide projects, state-of-the-art analysis, gap analysis, and recommendation for R&D topics
- Addresses integrity, safety, network and end-use equip., metering and gas quality, network management and compression, inspection and maintenance, hydrogennatural gas separation, and underground storage

Summary of Thoughts

- Use of existing natural gas infrastructure represents great potential for transport of hydrogen and progress toward a low carbon energy future
- Technical and economic challenges need to be resolved through research to safely and reliably transport blended hydrogen.
- Engagement in industry projects and research efforts is key in understanding and navigating the technical challenges
- Conversion from natural gas to blended hydrogen is not standardized within the industry and requires case-by-case assessments/engineering analysis considering materials of construction, H2 blend %, and operating parameters.
- Enbridge is developing a foundation of knowledge and experience to successfully blend hydrogen into its existing network. Continued engagement is key!

Carbon Capture and Storage – What is it?



Carbon capture and storage (CCS) takes carbon dioxide (CO2) emissions from industrial facilities and permanently stores them deep underground. CCS is a viable way to meaningfully reduce greenhouse gas emissions from critically important industries. CCS moves us toward a cleaner future at the lowest possible cost to the economy.

What is Carbon Capture and Sequestration?

- Capturing CO2 from large volume point sources emitters
- Purifying to maximize the CO2 content
- Transporting the CO2 to a suitable storage site
- Injecting the CO2 into deep geological formations for permanent storage using specially constructed and monitored wells
- Primarily targeting saline aquifers or depleted oil and gas reservoirs

Current Pipeline Technology for CO2 Transportation

Catalog No. PR182-224504-R01

LEADING PIPELINE RESEARCH

Pipeline Transportation of CO₂ SOTA, Gap Analysis and Future Project Roadmap

ALT-1-6

Contract PR182-224504

Prepared for the

Design, Material and Construction Technical Committee

Of

Pipeline Research Council International, Inc.

Prepared by:

Pipeline Research Council International

Authors:

Emilie Soileux, Gianluca Mannucci, Ali Smith, Andrew Cosham, Tommaso Iannaccone, Federica Sammartino, Maryam Hosseinzadeh Arbani, Marco Zippa

Release Date: 11/09/2023

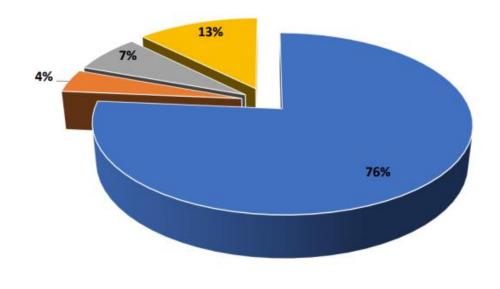
Version	Date of Last Revision	Comments
1	September 1, 2023	First draft
2	October 13, 2023	Final Version
3	November 09, 2023	Revised Final Version

ÉNBRIDGE

Life Takes Energy

Project Activities

Task 1 - Literature review which consist of two sub-tasks


- Mapping of current CO₂ pipeline project worldwide.
- SOTA analysis of existing data
- Task 2 Gap analysis of existing data
- Task 3 Roadmap proposing future R&D projects to address gaps

Task 1 – Existing CO2 Pipelines and Demand Forecast

Existing CO2 Pipelines:

- 6000 miles worldwide, 5300 miles in North America
- Almost all CO2 pipelines are used for enhance oil recovery

Forecast for Future CO2 Pipeline Construction

To achieve net-zero carbon emission objectives, substantial CO2 infrastructure is needed:

- According to a 2030 roadmap for Carbon Capture and Storage for E&P Companies, the United States is planning to build 29,000 miles (46,671 km) of CO2 pipelines
- For Europe, the EU Energy Roadmap estimates a total of12,427 miles (20,000 Km) of CO2 pipeline infrastructure is needed by 2050

Pipeline Challenges for CO2 Pipelines

The PRCI report gap analysis concluded four Focus Areas for CO2 Pipelines:

- Internal Corrosion
- Fracture Control
- Dispersion Modelling
- Re-purposing existing pipelines

Figure 2: Vehicle is Parked on HWY 433 - The White is Ice Generated by the Release of CO₂ - The Blue Arrow Points North (Aerial Drone Photograph Courtesy of the Mississippi Emergency Management Agency)

Internal Corrosion Focus Area - Literature Review

- The effect of trace elements on water solubility and corrosion.
- Thermodynamic models.
- Risk of water drop-out in different pipeline scenarios.
- Risk of hydrogen sulfide (H₂S) cracking.
- Risk of stress corrosion cracking from CO₂-CO-H₂O.
- Risk of cracking from hydrogen (H₂) gas.
- Risk of corrosion fatigue.
- Specifications for maximum trace element levels.
- Risk of damage to internal coatings.
- Test methods for corrosion and stress corrosion in CO2-trace element mixtures.

Fracture Focus Area - Literature Review

- For CO2 (Gas) and CO₂ Liquid (Dense Gas Phase)
 - Fracture initiation
 - Fracture propagation and arrest
 - Decompression behavior
 - Numerical modeling
 - Crack arrestor technologies

Safety and Dispersion Control – Literature Review

- Overview of current regulatory frameworks focused on safety aspects of CO₂ transportation.
- Historical factors influencing public acceptance of CO₂ pipeline routes.
- Modelling approaches for the analysis of atmospheric dispersion of CO₂ following a pipeline leak or rupture.
- CO₂ specific failure modes, release scenarios, and release parameters.
- Equations of State for specific Hydraulic Modelling and Flow Assurance purposes.
- Frame effect of potential solids formation on release and dispersion modelling.
- Impact of potential running ductile failure on consequence modelling set-up and results.
- Exposure levels for CO₂ and relevant consideration of indoor vs. outdoor receptors and physiological impacts on receptor response.
- Effective mitigation to limit CO₂ pipeline risk.
- Emergency response planning with respect to CO₂ including consideration of low temperatures formed during release and pipeline blowdown.

Re-Purposing Existing Pipeline for CO2 Service

- Viability identification of any fundamental characteristic which may prevent change in use.
- 2. Design and operability data assessment design review and identification of all modifications necessary.
- 3. Detailed technical assessments.


Summary of Thoughts

- CO2 Capture and Storage is an essential element to meeting net zero climate objectives
- Safe, efficient and reliable pipeline infrastructure is needed to met these goals
- Further attention is needed in research and industry commitment in the following areas
 - Internal Corrosion
 - Fracture Control
 - Dispersion Modelling
 - Repurposing existing lines

Questions?

